40 research outputs found

    Enumerative sphere shaping techniques for short blocklength wireless communications

    Get PDF

    Enumerative sphere shaping techniques for short blocklength wireless communications

    Get PDF

    Probabilistic Constellation Shaping Algorithms: Performance vs. Complexity Trade-offs:Performance vs. Complexity Trade-offs

    Get PDF
    We review the recent advances in the design of probabilistic shaping algorithms. We investigate the implementation complexity of these algorithms in terms of required storage and computational power. We show that (1) the optimum performance can be achieved via different algorithms creating a trade-off between storage and computational complexities, and (2) a significant reduction in complexity can be achieved via the recently-proposed shift-based band-trellis enumerative sphere shaping if a slight degradation in performance is tolerated

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    Temporal Properties of Enumerative Shaping:Autocorrelation and Energy Dispersion Index

    Get PDF
    We study the effective SNR behavior of various enumerative amplitude shaping algorithms. We show that their relative behavior can be explained via the temporal autocorrelation function or via the energy dispersion index

    Partial Enumerative Sphere Shaping

    Full text link
    The dependency between the Gaussianity of the input distribution for the additive white Gaussian noise (AWGN) channel and the gap-to-capacity is discussed. We show that a set of particular approximations to the Maxwell-Boltzmann (MB) distribution virtually closes most of the shaping gap. We relate these symbol-level distributions to bit-level distributions, and demonstrate that they correspond to keeping some of the amplitude bit-levels uniform and independent of the others. Then we propose partial enumerative sphere shaping (P-ESS) to realize such distributions in the probabilistic amplitude shaping (PAS) framework. Simulations over the AWGN channel exhibit that shaping 2 amplitude bits of 16-ASK have almost the same performance as shaping 3 bits, which is 1.3 dB more power-efficient than uniform signaling at a rate of 3 bit/symbol. In this way, required storage and computational complexity of shaping are reduced by factors of 6 and 3, respectively.Comment: 6 pages, 6 figure
    corecore